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Amplitude equilibration of sugar–salt fingers
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The mechanism by which amplifying salt fingers in an unbounded uniform T/S

gradient are equilibrated is determined, starting with a time-dependent asymptotic
field equation for (Rτ )−1 − 1 = ε → 0, where R > 1 is the T/S density ratio and
τ = KS/KT < 1 is the molecular diffusivity ratio. A mode truncation of that equation
yields an ODE which shows that the fastest growing finger mode transfers energy to
two ‘slave’ modes with relatively small vertical scale; the finger mode thereby attains
a statistically steady amplitude. The results for τ = 1/3 are compared with spectral
solutions of the non-truncated equations in two and three dimensions; the predicted
fluxes are testable in sugar (S), salt (T ) laboratory experiments.

1. Introduction
A doubly diffusive fluid consists of two different substances (T , S) with molecular

diffusivities KT >KS . In an unbounded basic state with uniform vertical gradients
(T z, Sz) and a density ratio R:

1 < R ≡ T z/Sz < KT /KS ≡ 1/τ, (1.1)

the primary instability consists of long thin salt fingers (see Kunze 2003 for a review
of salt fingers). Here and in all that follows the (constant) coefficients of expansion
are absorbed in the T , S symbols so that these represent the density contributions to
the linear equation of state in the Boussinesq dynamics.

There are several previous numerical and qualitative studies (see Shen 1995 and
Stern, Radko & Simeonov 2001, for example) of the statistical equilibration of fingers
in the case of oceanographic interest, wherein T = temperature, S =salinity, and

1

Rτ
− 1 ≡ ε (1.2)

is large (ε � 1). Shen (1995) demonstrates that the originally z-independent fingers
equilibrate due to Holyer’s (1984) instability, in which the new unstable mode corres-
ponds to a vertically periodic horizontal shear flow. As the latter amplifies, the straight
fingers become wavy and eventually break apart into a disorganized convection of
rising and sinking blobs. A qualitatively different picture is often found in laboratory
sugar–salt experiments where the distorted equilibrium fingers retain their vertical
coherence and relative organization (e.g. figure 4 of Krishnamurti 2003). We note that
in the limit of large Prandtl number the growth rate of Holyer’s (1984, her equation
(4.35)) shear flow instability approaches zero, so that there must be a different
instability/equilibration mechanism. Here we seek such an alternative mechanism for
the equilibration of sugar–salt fingers, and we shall consider the question in a tractable
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regime wherein

ε → 0+. (1.3)

Unlike Holyer (1984), who considers the stability of steady finite-amplitude fingers, in
the present study the basic state will correspond to the fastest growing fingers. This
regime is experimentally realizable with a uniform salt(T )/sugar(S) gradient produced
in a tall vessel using the ‘double-bucket’ technique (see Stern & Turner 1969).

Nonlinear evolutionary equations applicable to this limit (1.3) were obtained
(Radko & Stern 1999) by making an asymptotic expansion of the high-Prandtl-
number (ν/KT ) equations appropriate to sugar–salt. For the convenience of the
reader the derivation of these equations will be reviewed in § 2. It is noteworthy
that in these ε � 1 equations there is negligible modification of the mean T z, Sz field
by the fingers, and therefore equilibration of this field is only possible by nonlinear
modal (triad) interactions. To explore this mechanism the two-dimensional version of
the Radko–Stern equation will be truncated (§ 3) to obtain the interaction of the long
thin primary finger mode with two ‘slave’ modes characterized by negative growth
rate in the linearized primary instability theory. After showing (§ 3) that these small
disturbances grow at the expense of the long finger mode, we turn to the steady solu-
tions of the governing nonlinear ODE. These possible solutions are highly degenerate
with respect to the permissible vertical wavenumber of the ‘slaves’. Next (§ 3), the
transient solution of the time-dependent ODE indicates that the aforementioned
steady solutions are also unstable, and the statistically steady equilibrating triads are
still highly degenerate. This point focuses attention on the question of which solution
is realized in full two- and three-dimensional spectral calculations (§ 4 and § 5). The
behaviour of these will be partially explained by the mode truncation theory in § 3.
Additional statistics are obtained and summarized in § 6.

2. The ε → 0 theory
The high-Prandtl-number equations

Since the sugar–salt Prandtl number is ∼ 103, and

τ ∼= 1/3, (2.1)

it is permissible to neglect the acceleration terms in the Boussinesq equations, while
retaining the full T/S conservation equations. (It is assumed that for R > 1 the
system will yield a solution with a moderate Reynolds number, consistent with
the high-Prandtl-number equations.) These equations are now conventionally non-
dimensionalized using a (finger) length scale

d ≡ (KT ν/gT z)
1/4, (2.2)

a time scale d2/KT , a velocity scale KT /d , a pressure scale νKT /d2, and T zd as
the scale for the total deviations (T ≡ T ′ + θ(z, t), S ≡ S ′ + σ ) from the basic state
(T (z), S(z)). With S ′ − T ′ as the density perturbation, and with periodic boundary
conditions, the high-Prandtl-number equations are

0 = −∇p + ∇2v + (T ′ − S ′)k, (2.3a)

∇ · v = 0, (2.3b)

d

dt
[T ′ + θ] + w = ∇2(T ′ + θ), T

′
= 0 = S

′
= w, (2.3c)

d

dt
[S ′ + σ ] +

1

R
w = τ∇2(S ′ + σ ), 〈θ〉 = 0 = 〈σ 〉, (2.3d)
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where the overbar and angle brackets denote horizontal and vertical average,
respectively. The well-known fastest growing linear solution of these is independent
of z, and has an x-wavelength ∼ d .

ε ≡ (1/Rτ ) − 1 → 0 (Radko & Stern 1999)

In this next asymptotic expansion the choice of the x, y, t scales (equation (2.4)) in
the new non-dimensionalization is motivated by the fact that these give the fastest
growing finger mode in the linearization of (2.3) when ε → 0. In addition, and most
significantly, for the x-scale in (2.4) the largest vertical wavenumber that can be
linearly amplified is given by the z-scaling in (2.4). Thus we substitute

x = ε−1/4x0, y = ε−1/4y0, z = ε−1/4z0, t = ε−3/2t0, (2.4)

(u, v, w) = ε5/4(u0, v0, w0) + · · · , p = ε3/2p0, (2.5)

T = ε3/4T0 + · · · , S = ε3/4S0 + · · · . (2.6)

into (2.3) and then let ε → 0. The scaling in (2.6) may be rationalized if it is anticipated
that the density deviation (S ′ − T ′) is smaller than the individual S ′ or T ′. Dividing
(2.3d) by τ , subtracting (2.3c) from the result, and neglecting the density diffusion
term gives the following balance:

w

(
1

τR
− 1

)
∼ w

∂T ′

∂z
− w

τ

∂S ′

∂z
∼ wT ′

ε−1/4

or T ′ ∼ ε3/4. The diffusive advective balance w ∼ ∇2T ′ then gives the velocity scale
in (2.5), and the pressure scale follows from the horizontal momentum equation. In
terms of the new coordinates with subscript zero the leading order ε5/4 balance of
both advection–diffusion equations yields the diagnostic equations

w0 = ∇2
0T0 = ∇2

0S0, (2.7)

thereby justifying

T0 = S0 (2.8)

and

T 0 = S0 = 0. (2.9)

The pressure force in the vertical momentum equation requires the buoyancy force to
be O(ε7/4), and thus the T –S expansions should be continued as

T = ε3/4T0 + ε7/4T1, S = ε3/4S0 + ε7/4S1, w = ε5/4w0 + εqw1, (2.10)

where q is an as yet undetermined exponent. (Since the q terms will cancel in the final
result (2.16) it will not be necessary to determine q .) The leading-order momentum
equations are

∂

∂x0

p0 = ∇2
0u0,

∂

∂y0

p0 = ∇2
0v0, (2.11)

∂

∂z0

p0 = ∇2
0w0 + T1 − T 1 − (S1 − S1). (2.12)

After (2.7) the next order (ε9/4) balance of the advection diffusion equation, using
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1/R = τ (1 + ε) and q = q − 9/4, is

∂

∂t0
T0 + ∇0 · (v0T0) = ∇2

0T1 − w1ε
q, (2.13a)

∂

∂t0
S0 + ∇0 · (v0S0) + τw0 = τ∇2

0S1 − τw1ε
q. (2.13b)

Subtracting these from their respective averages and using (2.9) gives

∂

∂t0
T0 + ∇0 · (v0T0) − ∂

∂z0

(w0T0) = ∇2
0(T1 − T 1) − w1ε

q, (2.14)

∂

∂t0
S0 + ∇0 · (v0S0) + τw0 − ∂

∂z0

(w0S0) = τ∇2
0(S1 − S1) − τw1ε

q. (2.15)

Now multiply (2.14) by τ and subtract from (2.15). The result using T0 = S0 and
the vertical momentum equation is

(1 − τ )

[
∂

∂t0
T0 + ∇0 · (v0T0) − ∂

∂z0

(w0T0)

]
+ τw0 = τ∇2

0

(
∇2

0w0 − ∂

∂z0

p0

)
. (2.16)

Henceforth subscript zero will be dropped (all terms are leading order). From (2.11),
(2.7), and the continuity equation we obtain

∇2
hp ≡ ∂2

∂x2
p +

∂2

∂y2
p = − ∂

∂z
∇2w = − ∂

∂z
∇4T .

This results in the complete system:

(1 − τ )

[
∂

∂t
T + ∇ · (vT ) − ∂

∂z
(wT )

]
+ τw = τ∇6T − τ

∂

∂z
∇2p, (2.17a)

∇2
hp = − ∂

∂z
∇4T , (2.17b)

∇2u =
∂

∂x
p, (2.17c)

∇2v =
∂

∂y
p, (2.17d)

w = ∇2T . (2.17e)

To obtain the heat flux, temperature variance, and buoyancy flux in the same non-
dimensional units as (2.3) the solution of (2.17) should be multiplied by the ε-factors
listed below:

〈wT ′〉 ∼ ε2, 〈T ′2〉 ∼ ε3/2, 〈w(T ′ − S ′)〉 ∼ ε3. (2.18)

These important scaling laws are discussed in § 6.
In solving (2.17) using a Fourier series the typical temperature mode is

T = Tkxkykz
exp(ikxx + ikyy + ikzz) (2.18a)

where (kx, ky, kz) are the wavenumbers. From the diagnostic equations in (2.17) we
then obtain the corresponding components

wkxkykz
= −

(
k2

x + k2
y + k2

z

)
Tkxkykz

(2.18b)

pkxkykz
= ikz

(
k2

x + k2
y

)−1(
k2

x + k2
y + k2

z

)2
Tkxkykz

(2.18c)
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ukxkykz
= kxkz

(
k2

x + k2
y

)−1(
k2

x + k2
y + k2

z

)
Tkxkykz

(2.18d)

vkxkykz
= kykz

(
k2

x + k2
y

)−1(
k2

x + k2
y + k2

z

)
Tkxkykz

. (2.18e)

We shall also need the spacially averaged downward heat flux

−〈wT 〉 = −
∑

wkxkykz
T ∗

kxkykz
(2.19)

where the asterisk denotes a complex conjugate and the sum is over all wavenumbers.
According to the linearized solution of (2.17) the growth rate of a single mode

(2.18a) is

λ =
τ

1 − τ

(
k2

x + k2
y + k2

z

) [
1 −

(
k2

x + k2
y + k2

z

)2

(
1 +

k2
z

k2
x + k2

y

)]
, (2.20)

and the fastest growing (elevator) mode for τ = 1/3 is given by

kz = 0, k2
x + k2

y = 2k2 = 1/
√

3, τ/(1 − τ ) = 1/2, (2.21a)

λ = λ1 = k2[1 − (2k2)2], (2.21b)

k2 =
1

2
√

3
, λ1 =

1

3
√

3
. (2.21c)

These asymptotic linear theory results converge to that for the full Navier–Stokes
equations in the limit of large Prandtl number and ε → 0. As previously asserted, for
the same k there exists a cutoff kz = O(1) with zero growth rate, i.e. larger kz are
damped; this will appear as a significant ‘slave’ mode in that which follows.

3. Two-dimensional mode truncation theory
3.1. Triad interaction equations

The component in (2.21a, b, c) (called the ‘elevator mode’), and a mode with the same
horizontal wavenumbers but a slightly larger kz = m0 � 1 have essentially the same
growth rate. In order to find out how the nonlinear solution of (2.17) equilibrates the
latter mode, we assume it interacts with two other Fourier components: {kx = ky =
k, kz =m = O(1)} and {kx = ky = 2k, kz = µ = m +m0}. The largest scale mode with
kx = ky = k, kz =m0 will also be denoted by the symbol {1, 1, 0}, while the other two
modes are {2, 2, µ} and {1, 1, m}. (As already mentioned, there are many (horizontal
and vertical) modes that can equilibrate the fingers and the particular horizontal
wavenumbers chosen above serve only as an illustration; for the quantitative aspects
of the equilibration, see the subsequent spectral solutions where all modes are present.)
The nonlinear and linear terms in (2.17) with these three wavenumbers will now be
collected and equated, neglecting all other Fourier components such as may arise
from the product (AB) of any two scalar components (A and B). If A110 denotes the
Fourier amplitude of mode {1, 1, m0} then

{1, 1, m0} component of AB = A22µB∗
11m + B22µA∗

11m,

{2, 2, µ} component of AB = A11mB110 + B11mA110,

{1, 1, m} component of AB = A22µB∗
110 + B22µA∗

110.


 (3.1)
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Since w110 = −(2k2 + m2
0)T110 etc., the expansion of ∂(wT )/∂z using (3.1) with (2.18b)

is
∂

∂z
(wT )110 = −im0(10k2 + m2 + µ2)T ∗

11mT22µ,

∂

∂z
(wT )22µ = −iµ

(
4k2 + m2 + m2

0

)
T11mT110,

∂

∂z
(wT )11m = −im

(
10k2 + µ2 + m2

0

)
T ∗

110T22µ.




(3.2)

For a plane wave disturbance with ky = kx , (2.18d, e) gives

∂

∂x
(uT )110 +

∂

∂y
(vT )110 = 2i

{
µ

4
(8k2 + µ2) +

m

2
(2k2 + m2)

}
T22µT ∗

11m,

∂

∂x
(uT )22µ +

∂

∂y
(vT )22µ = 4i

{
m

2
(2k2 + m2) +

m0

2

(
2k2 + m2

0

)}
T11mT110,

∂

∂x
(uT )11m +

∂

∂y
(vT )11m = 2i

{
µ

4
(8k2 + µ2) +

m0

2

(
2k2 + m2

0

)}
T22µT ∗

110.

When these are inserted into (2.17a), and (2.18a–c) are used for the linear terms, we
obtain

Ṫ110 = iB1T
∗
11mT22µ + λ1T110, (3.3a)

Ṫ22µ = iB2T11mT110 + λ2T22µ, (3.3b)

Ṫ11m = iB3T
∗
110T22µ + λ3T11m, (3.3c)

where the overdot denotes a time derivative and

B1 ≡ −
{

µ

2
(8k2 + µ2) + m(2k2 + m2) − m0(10k2 + m2 + µ2)

}
, (3.4a)

B2 ≡ −
{
2m(2k2 + m2) + 2m0

(
2k2 + m2

0

)
− µ

(
4k2 + m2 + m2

0

)}
, (3.4b)

B3 ≡ −
{

µ

2
(8k2 + µ2) + m0

(
2k2 + m2

0

)
− m

(
10k2 + µ2 + m2

0

)}
. (3.4c)

The linear growth rate terms in (3.3), obtained from (2.20), are

λ1 =
1

2

(
2k2 + m2

0

)[
1 −

(
2k2 + m2

0

)2

(
1 +

m2
0

2k2

)]
, (3.5a)

λ2 =
1

2
(8k2 + µ2)

[
1 − (8k2 + µ2)2

(
1 +

µ2

8k2

)]
, (3.5b)

λ3 =
1

2
(2k2 + m2)

[
1 − (2k2 + m2)2

(
1 +

m2

2k2

)]
, (3.5c)

k2 =
1

2
√

3
, m0 � 1, µ = m0 + m. (3.5d)

For the case when m0 = 0 (elevator) we have the important inequalities

λ1 > 0, λ2 < 0, (3.6)

B1 < 0, B2 = −m3 < 0, B3 > 0, (3.7)
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In addition if m is such that

(2k2 + m2)2
(

1 +
m2

2k2

)
> 1 or m > 0.51, (3.8a)

we have

λ3 < 0, (3.8b)

pointing to a range of wavenumbers m in which both {1, 1, m} and {2, 2, m} are
linearly damped slave modes.

3.2. Steady-state solutions

Let us first note the steady solutions of (3.3) in which d/dt = 0:

T22µ = − iB2

λ2

T11mT110,

0 =

[
B1B2

λ2

T11mT ∗
11m + λ1

]
T110,

0 =

[
B2B3

λ2

T110T
∗
110 + λ3

]
T11m.

If (3.8b) is satisfied then we have admissible steady solutions with

|T110|2 = − λ2λ3

B2B3

> 0 (3.9a)

T22µ = ±i

√
λ1λ3

B1B3

(3.9b)

|T11m|2 = − λ1λ2

B1B2

> 0. (3.9c)

The heat flux obtained from (2.19) and (2.18b) is

−〈wT 〉 = 2
(
2k2 + m2

0

)
|T110|2 + 2(8k2 + µ2)|T22µ|2 + 2(2k2 + m2)|T11m|2, (3.10a)

where the factors of 2 are due to the contribution from the complex-conjugate modes.
Since k is given by (3.5d), the heat flux only depends on m in (3.8a). We conclude

that the primary instability mode kx = k, ky = k, kz =m0 → 0 can be equilibrated by its
interaction with two ‘slave’ modes, the crucial one {1, 1, m} being slightly (linearly)
damped, according to (3.8). One particular equilibrium solution

|T110| sin k(x + y) + |T22m| cos[2k(x + y) + mz] + |T11m| sin(kx + mz)

for m =0.8 is plotted in figure 1(a).
The plot (figure 1b) of these steady finite-amplitude solutions for m0 = 0, µ = m

contains a cutoff at

mc = 0.51, (3.10b)

the value of which is unchanged even if the primary mode has a small finite wave-
number m0 � 1. (A similar cutoff mc = 0.62 is obtained when modes {3/2, 3/2, µ}
and {1/2, 1/2, m} are chosen for the slaves and the equilibrium heat flux in this case
(figure 1c, dashed line) is about 6 times smaller.) The physical significance of this
cutoff, as revealed in figure 1(b), is that the energy of the equilibrating slaves is a
maximum. This suggests a wavenumber (m) selection criterion similar to that used
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Figure 1. The steady solutions of (3.9) when m0 = 0, µ= m. (a) An x = y cross-section of the
equilibrium solution for m= 0.8. The horizontal domain size corresponds to one wavelength
of the elevator mode (m0 = 0), and the domain aspect ratio is 10:1. (b) ζ1 = |T110|, ζ2 = |T22m|,
ζ3 = |T11m|; the first of these is the primary finger mode which is unstable with respect to the
two ‘slave’ modes (see text). One of these {1, 1,m} has a maximum amplitude at the cutoff
mc = 0.51, and the elevator mode {1, 1, 0} has a smaller amplitude. (c) The total heat flux
(solid curve), however, is a minimum at mc . No equilibrated solutions exist for m < mc . The �

points are the statistically steady values computed from the time-dependent ODE in § 3.5. The
dashed curve is the flux for a smaller kx = ky = k/2 (see text).

in classical instability theory. All of the following work is directed to the question of
whether mc is realized in more complete calculations.

3.3. Time-dependent triad interactions

In (3.3) let

T22µ = −iζ2, T110 = ζ1, T11m = ζ3. (3.11)

If the ζ are real functions of t , then

ζ̇1 = B1ζ2ζ3 + λ1ζ1, (3.12a)

ζ̇2 = −B2ζ1ζ3 + λ2ζ2, (3.12b)

ζ̇3 = B3ζ1ζ2 + λ3ζ3. (3.12c)

Similar equations have been obtained previously in the context of salt fingers (Hughes
& Proctor 1990) but these describe a physically different instability mechanism. We
begin by considering the stability of a basic state consisting of a single amplifying
finite-amplitude mode:

ζ 1 = A1e
λ1t , ζ 2 = 0, ζ 3 = 0,
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upon which we superimpose small perturbations ζ ′
1, ζ2 = ζ ′

2(t), ζ3 = ζ ′
3(t). The linearized

evolution equations, using d/dt = λ1ζ 1d/dζ 1, may be written as

dζ ′
2

dζ 1

=
−B2

λ1

ζ ′
3 +

λ2ζ
′
2

λ1ζ 1

,

dζ ′
3

dζ 1

=
B3

λ1

ζ ′
2 +

λ3ζ
′
3

λ1ζ 1

.

For large t and ζ 1 the last term in each of these equations is negligible, and then the
asymptotic perturbation equation

d2ζ ′
3

dζ
2

1

=
−B2B3

λ2
1

ζ ′
3 + O

(
ζ ′
3

ζ 1

)

has the solution

ζ ′
3  exp

[
(−B2B3)

1/2λ−1
1 eλ1t

]
,

B2B3 < 0.

Thus we see that initially the two slaves (with m > mc) grow even faster (super-
exponentially) than the finite-amplitude primary instability (ζ 1(t)). These theoretical
results will be related qualitatively to the spectral calculations in § § 4 and 5.

3.4. Unsteady triads

Next we consider the stability of the steady state triad {ζ 1, ζ 2, ζ 3} whose finite
amplitudes are given by (3.11) and (3.9), namely

ζ
2

1 = − λ2λ3

B2B3

, ζ
2

2 =
λ1λ3

B1B3

, ζ
2

3 = − λ1λ2

B1B2

. (3.14)

If ζ ′
1(t), ζ

′
2, ζ

′
3α eωt denote the perturbed amplitudes, then (3.12) yield the eigenvalue

relation ∣∣∣∣∣∣∣
ω − λ1 −B1ζ 3 −B1ζ 2

B2ζ 3 ω − λ2 B2ζ 1

−B3ζ 2 −B3ζ 1 ω − λ3

∣∣∣∣∣∣∣ = 0

for the growth rate ω. After considerable algebraic simplification utilizing (3.14) and
assuming ζ 1ζ 2ζ 3 > 0, the determinant reduces to

ω3 − (λ1 + λ2 + λ3)ω
2 + 4λ1λ2λ3 = 0. (3.15)

The interesting case for specific discussion is near the cutoff ((3.8a, b), (3.10b))
wavenumber where {1, 1, m} is slightly damped or

λ3 → 0−, λ1 + λ2 �
1

3
√

3
− 2√

3
< 0. (3.16)

We now seek asymptotic solutions of (3.15), or equivalently,

ω3 + pω2 + δ = 0

where

p ≡ −(λ1 + λ2 + λ3) > 0 and δ = 4λ1λ2λ3 → 0+,
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Figure 2. The first triad calculation for µ= 0.6, m0 = 0 initialized with the steady state T110,
T22m, T11m, slightly perturbed along the imaginary axis. (a) Time series of the T -amplitudes of
the elevator mode, the primary slave mode {1, 1,m}, and the secondary slave mode {2, 2, µ},
denoted by solid, long-dashed, and short-dashed lines, respectively. (b) A blow-up view of a
single pulsation in (a). (c) The r.m.s. horizontal velocity (thin line) and its running average
(thick line) as a function of time. (d) The running average of the heat flux as a function of
time. The wiggles are associated with the relaxation oscillation in (a).

for ω = aδ1/2 + bδ1 + · · ·. From the leading- and next-order terms in the cubic
expansion we obtain

ω = ± i

p1/2
δ1/2 +

δ

2p2
+ · · · ,

Reω → δ

2p2
> 0.

This shows that the steady solution with the largest slave amplitude is slightly (O(δ))
amplified by an overstable oscillation with

frequency = −(λ1 + λ2)
−1/2(4λ1λ2λ3)

1/2. (3.17)

Therefore the strictly steady solutions cannot be realized, as demonstrated below.

3.5. Finite-amplitude triad oscillations

Now we turn to the time-dependent finite-amplitude solutions of (3.3) using (3.4)
and (3.5) for m0 = 0, µ =m. The first calculation for m =0.6 corresponds to a
slightly perturbed steady equilibrium initialized with T110 = 2.8 + 0.1i, T22m = − 0.1i,
and T11m = 2.5 + 0.1i. The ODE (3.3) was integrated in time using a second-order
Runge–Kutta scheme with a time step �t = 0.01 and double precision. The initial
exponential increase in the amplitude oscillations (up to t = 500) on figure 2(a) verifies
that the steady equilibrium solutions are subject to oscillatory instability (§ 3.4). The
growth rate and the period of the oscillations are about 10% larger than those
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predicted by (3.15), which is because the initial perturbation is not a normal mode.
Despite the initial instability, the mode amplitudes and the r.m.s. horizontal velocity

〈u2〉1/2 =

{
m

k

[
8k2 + m2

2

]
|T22m|2 + (2k2 + m2)|T11m|2

}1/2

seem to equilibrate at t = 1500 (figure 2a, c) at a periodic solution resembling a relaxa-
tion oscillator. A single relaxation oscillation is shown in detail on figure 2(b). For
1070< t < 1086 the primary mode (m = 0) grows exponentially while the two secon-
dary modes remain of very small amplitude. Eventually, the amplitude of the primary
mode becomes large and causes the super-exponential growth of the slave modes,
discussed in § 3.3. As the amplitudes of the slave modes increase, the nonlinear
damping (B1 < 0) term in (3.3a) becomes dominant and the primary mode is rapidly
damped. This in turn leads to a decrease of the nonlinear forcing terms B2 and B3 in
(3.3b, c), and as the λ2, λ3 terms begin to dominate the slave modes begin to decay.
Finally, when the slave mode amplitudes become very small (beyond t > 1100) the
nonlinear damping B1 becomes insignificant and the primary mode will grow again
and the whole cycle will be repeated. Further diagnosis of the running average of the
heat flux

〈wT 〉RA =
1

t

∫ t

0

〈wT 〉 dt ′

(figure 2d) shows that this equilibrates at a value 〈wT 〉RA = − 29.8 which is roughly
50% larger than the steady-state heat flux. The running average r.m.s. horizontal
velocity 〈u2〉1/2

RA (figure 2c, thick line) is, however, about 3 times smaller than the initial
value. The reliability of these results was tested by repeating the calculation with
halved time step �t = 0.005. Apart from a phase lag of 1.5 time units the two
calculations were identical to 4 significant digits near t = 4953.

The same statistical equilibrium values (to 3 significant digits) for 〈u2〉1/2 and 〈wT 〉
were also obtained when the calculation was repeated (not shown) in the real plane
by solving (3.12) in terms of the real ζ variables. Thus all subsequent calculations,
exploring the dependence of the statistical equilibrium fluxes on m, will be performed
in the real plane. The next such calculation (figure 3) for m =1.0 is initialized with
the near equilibrium values ζ1 = 7.1, ζ2 = 0.35, ζ3 = 1.2, and a time step 0.005. The
early exponential instability (figure 3a, b) is again followed by nonlinear equilibration
leading to a statistically steady regime for t > 200. Note that a much larger average
heat flux 〈wT 〉 = − 93.8 than in figure 2(d) occurs because the latter has a much
smaller temporal width for each large ζ1 pulse.

Similar results were obtained from other calculations for values of m in the range
0.5 < m < 1.0 and the corresponding equilibrium heat fluxes were plotted as � on
figure 1(c). The results indicate that the equilibrium fluxes increase with m and are
about 50% larger than the steady-state fluxes (figure 1c, solid line); the latter however
seem to provide significant qualitative insight into the equilibration mechanism.

It is interesting to see what happens when m =0.5 is below the cutoff wavenumber
(mc) for linearly damped ζ3-modes. Initialization with ζ1 = 1.0, ζ2 = 0.1, ζ3 = 3.0 and
time step �t = 0.01 caused the primary mode (m =0) to be damped (figure 4a, solid
line) because the nonlinear term (B1) overwhelms the linear amplification (λ1). The
final state was one in which only ζ3 grows exponentially (figure 4b, c), i.e. the elevator
mode gives way to the {1, 1, m} mode which self-amplifies according to the linear
theory (2.20). The same result is also obtained when the initial amplitude ζ3 = 0.1 is
much smaller.
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Figure 3. Triad calculation initialized with near equilibrium amplitudes for m= 1.0, and
m0 = 0. (a) Time series of the amplitudes of the elevator mode, the primary slave mode {1, 1,m},
and the secondary slave mode {2, 2, µ}, denoted by solid, thick solid, and short-dashed lines,
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horizontal velocity (thin line) and its running average (thick line) as a function of time. (d) The
running average of the heat flux as a function of time.

4. Two-dimensional spectral solutions of (2.17)
4.1. Calculations in a narrow 1 finger-pair domain

The foregoing results are now compared with exact two-dimensional solutions of the
asymptotic equations (2.17). It is convenient, however, to rotate the axis through
45◦ relative to those in the preceding section, so that this two-dimensional ‘roll’ has
vanishing y-derivative and a fundamental x-wavenumber k∗ = 3−1/4. The resulting
two-dimensional equations were discretized on a 16 × 32 periodic grid, and therefore
the solution was represented by 8 and 16 Fourier modes in the x- and z-directions
respectively. The horizontal box size was set equal to the horizontal wavelength of
the fastest growing elevator mode, and the vertical box size is 10 times the horizontal
size. The calculation was initialized with the fundamental† mode

T = 0.5 cos(k∗x) sin(m0z),

where m0 = 0.1k∗; thus the maximum resolved vertical wavenumber is 16m0 ≈ 1.2, and
the small random noise included wavenumber m =0. A fourth-order Runge–Kutta
time integration with a time step �t = 0.0001 was used.

During the initial exponential growth (not shown in figure 5a) the averaged heat
flux reaches a value of about −300 at t = 23, at which point the initial perturbation

† Although this is not the ‘elevator’ mode (m =0), the results of § 3 for small m0 indicate negligible
difference in the heat flux.
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starts to equilibrate via the nonlinear interaction with other modes. The subsequent
variation of the averaged heat flux (figure 5a) indicates the eventual establishment of
a statistically steady equilibrium with average heat flux 〈wT 〉 ≈ − 20; a 20% smaller
value was obtained when the calculation was repeated with double vertical resolution.
Figure 5(b) shows typical isolines of total perturbation temperature which reveal the
‘slaves’ in the round eddies (compare with figure 1a) responsible for the equilibration
of the m0 mode. On the left and right hand sides of figure 5(b) there are 7–8 dominant
peaks in the vertical, suggesting a vertical wavenumber 7m0(=0.53) to 8m0(=0.61),
which agrees with the cutoff point (mc) in the truncated calculations (§ 3); the heat
flux is also comparable.

We repeated the previous calculations in a domain 5 times taller, i.e. the horizontal
box size again equals the wavelength of the fastest growing elevator mode (2π/k∗),
(k4

∗ = 1/3), but the vertical box size is 50 times the horizontal size. The calculation used
16 × 256 grid nodes, �t = 0.00005, and was initialized with the fundamental z mode
T =0.5 cos(k∗x) sin(m0z) where m0 = 0.02k∗ =0.0152. The maximum resolved vertical
wavenumber is 128m0 ≈ 1.95. The statistically averaged (100< t < 200) heat flux in this
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calculation is 〈wT 〉 = − 21.9 (figure 6a), and the temperature isopleths correspond to
long wavy fingers (figure 6b) perturbed by round eddies (figure 6c, a zoom of the lower
1/8 of figure 6b). The vertical spectrum of the heat flux (figure 6d) shows that the
fundamental z-wavelength is responsible for almost half of the total heat flux and that
there is a cutoff point at m =40m0 = 0.608 (a slightly larger value than for the previous
slave eddies). The elevator mode had a negligible heat flux contribution because of
the initialization used. To verify this we repeated the calculation by initializing it
with the fastest growing elevator (m =0) mode T =0.5 sin(k∗x) and random noise
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of the heat flux as a function of the vertical wavenumber.

of amplitude 0.025. The statistically averaged (100 < t < 190) heat flux in this case
is 〈wT 〉 = − 18.2 (figure 7a) and the temperature isopleths are shown on figure 7(b).
The time-averaged (100 < t < 190) vertical spectrum of the heat flux has a double-
peak structure (figure 7c), but now the two peaks have comparable amplitudes and
the elevator mode makes the maximum contribution. The heat fluxes in figures 5–7
are consistent with the cutoff steady-state solution (solid curve in figure 1c) at mc.

4.2. Calculations in a wide domain

The previous section confirmed that the triad interaction mechanism of § 3 is
responsible for the equilibration when the horizontal domain size is one finger
wavelength. Here we increase the domain size to see if there will be any qualitative
change in the equilibration mechanism.

In the first calculation we use a computational box with horizontal and vertical size
set equal to 2 and 10 finger wavelengths. The resolution is the same as before (requiring
32 × 32 grid nodes) and the time step is �t =0.0001. The calculation was initialized
with the fastest growing ‘elevator’ mode and random noise of small amplitude. A
typical plot of the equilibrium isotherms (not shown) is characterized by the round
eddies and is qualitatively similar to figure 5(b). There is, however, a significant
quantitative difference with respect to the equilibrium heat flux 〈wT 〉 = − 3.4 ± 0.8
(figure 8a) which is 5 times smaller than in the case of one finger pair (figure 5a).
This smaller equilibrium heat flux (compare with figure 1c dashed line) is probably
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Figure 8(a–c). For caption see next page.

due to the fact that the present computational box includes triad interactions with the
subharmonic mode {1/2, 1/2, m}. When this calculation was repeated in even wider
domains with horizontal sizes of 8 (not shown) and 16 finger wavelengths respectively,
the equilibrium heat flux was 〈wT 〉 = − 3.6 ± 0.4 and 〈wT 〉 = − 3.5 ± 0.8 (figure 8b).
Thus an increase of the horizontal domain size beyond 2 finger wavelengths does
not seem to have a further effect on the equilibrium heat flux. The isotherms in the
calculation with 16 finger pairs are dominated by round eddies as in figure 5(b),
but such a plot cannot be compared with laboratory shadowgraph images that give
the variations in the index of refraction. A better comparison with the ‘tree bark’
shadowgraph images of Krishnamurti (2003, her figure 4), however, is obtained by
plotting the magnitude of the vertical velocity (figure 8c) which is equal to the
second derivative of the temperature. Also interesting is the average spectrum of the
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Figure 8. (a) Domain-averaged heat flux as a function of time in a two-dimensional spectral
calculation which is similar to figure 5 except that the horizontal domain size is equal to 2
finger wavelengths; removed from the plot is the initial period 0 < t < 40 when the heat flux
reaches −70. (b) Same as (a) but the horizontal domain size is 16 finger wavelengths; the large
heat flux peak of −74 at t = 10.9 has been excluded. (c) An x-z plot of the magnitude of the
vertical velocity in the 16 finger pair calculation; the contour interval is 0.6 and the grey-scale
coding is such that the maximum values correspond to white. (d) Time averaged (30 < t < 200)
spectrum of the horizontal temperature gradient in the 16 finger pair calculation.

horizontal temperature gradient (figure 8d) which shows that for this wider domain
most of the variance is still in the fastest growing wavenumber (k = 0.76).

5. Three-dimensional calculations for R = 1/τ = 3

Radko & Stern (1999) also made preliminary three-dimensional calculations of
(2.17) which showed that the two-dimensional spectral solution is unstable, resulting
in much larger finger fluxes than in two-dimensions. In their calculations the domain
size was 2π/k × 2π/k × 2π/m0, where k = k∗/

√
2 and m0 = 0.2k are the fundamental

horizontal and vertical wavenumbers, respectively. Thus the domain was designed so
that the two (fastest growing) Fourier modes with horizontal wavevectors k∗(1/

√
2,

−1/
√

2) and k∗(1/
√

2, 1/
√

2) were exactly resolved on a uniform 8 × 8 × 32 grid. An
average three-dimensional heat flux of about 〈wT 〉 = − 350 was obtained. We now
repeat this calculation with doubled resolution in both the horizontal and vertical
(m0 = 0.1k∗), i.e. 16 × 16 × 64 grid nodes will be used. The initial condition (figure 9a)
consisted of the aforementioned two Fourier modes contained in

T (x, y, z) = 5 sin kx sin ky,

and random noise of amplitude 10 times smaller was added. The numerical code is
the same one used in Radko & Stern (1999), and time integration was performed
with �t = 0.0001. After the initial phase (t < 10) of linear growth the solution
starts to equilibrate (figure 9c), and for t > 30 the statistically averaged heat flux
〈wT 〉 = − 108 ± 27 was about 30 times larger than in our (figure 8a) corresponding
two-dimensional run. (Approximately the same averaged heat flux 〈wT 〉 = − 96 ± 11
was obtained when the calculation was repeated with doubled x, y domain sizes.) The
equilibration is again due to the ‘round eddies’ (figure 9d) which extract energy from
the elevator mode and dissipate it by increasing the r.m.s. vertical gradients. A typical
horizontal section at t = 190 (figure 9b) illustrates the domination (and coherence) of
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Figure 9(a–c). For caption see next page.

the two initial Fourier modes; the distortion of the latter, however, suggests that other
horizontal modes are present at finite amplitude. The accuracy of the calculation was
diagnosed by plotting at every 5 time units (figure 9e) the last three terms of the
following power integral (obtained from (2.17):

1 − τ

τ

∂

∂t

〈
T 2

2

〉
+ 〈wT 〉 +

〈
T

∂

∂z
∇2p

〉
− 〈T ∇6T 〉 = 0.

In a statistically steady state the time-derivative term vanishes and therefore the sum
of the last three terms would vanish in an ‘exact’ calculation. In our finite-resolution
calculation, however, this sum (dashed line on figure 9e) has a time average of about
−14, which is attributed to energy losses due to the dealiasing technique (Canuto et al.
1987); note that the ∇6T term magnifies the high-wavenumber (dealiasing) errors.
Compared to the energy production term 〈wT 〉 the dealiasing error is about 13%.
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Figure 9. A three-dimensional spectral solution of equations (2.17) for τ = 1/3, initialized with
the fastest growing elevator mode with horizontal planform consisting of two ‘rolls’ aligned
along the diagonals x ± y = const. (see text). The horizontal and vertical domain sizes are
equal to

√
2 and 10 times the fastest growing wavelength, respectively. The grid has 16 nodes

in x, y and 64 nodes in z. (a) Horizontal isotherm section at z = 0 corresponding to the initial
condition. (b) Horizontal isotherm section illustrating the subsequent distortion of the primary
mode. (c) Domain-averaged heat flux as a function of time. (d) Vertical isotherm section
revealing the slave modes. (e) The terms in the temperature variance power integral (solid)
and their sum (dashed line) as a function of time. The slight imbalance (dotted curve) is due to
dealiasing errors (see text). (f ) Time-averaged spectrum of the vertical temperature gradient
as a function of the vertical wavenumber. (g) Time-averaged spectrum of the horizontal
temperature gradient as a function of the horizontal wavenumber.

The vertical and horizontal (time-averaged) gradient spectra (figure 9f, g) indicate
that our dealiased calculations have an adequate spatial resolution. As expected, the
vertical gradient spectrum has a peak at m =12m0 ≈ 0.9 which is somewhat in excess
of the cutoff (mc = 0.505) required for triad equilibration. The values of the r.m.s.
gradients (the area under the spectra) are 〈T 2

z 〉 =5.0 and 〈T 2
x 〉 = 48.3, respectively, and

the time-averaged 〈T 2
y 〉 was only 0.4% larger than 〈T 2

x 〉.
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With respect to this horizontal equipartition we briefly mention another calculation
in which the numerical domain was designed to resolve exactly the resonant triad of
primary Fourier modes with horizontal wavevectors k1 = k∗(1, 0), k2 = k∗(−1/2,

√
3/2),

and k3 = k∗(−1/2, −
√

3/2). This is achieved by setting the x and y domain sizes equal
to 2π/(k∗/2) and 2π/(

√
3k∗/2), respectively. Since the grid step is a multiple of the box

size it is obvious that in this case �x �=�y. This difference, however, was minimized
by using a grid with 16 nodes in x and 8 nodes in y, so that �y = (2/

√
3)�x ≈ 1.16�x.

The same vertical domain size (m0 = 0.1k∗), vertical grid step, and time step as in the
previous run were used. The calculation was initialized with

T (x, y, z) = 5

[
sin k∗x − sin k∗

x −
√

3y

2
− sin k∗

x +
√

3y

2

]
,

which gives rise to a hexagonal horizontal pattern; random noise with 50 times smaller
amplitude was added to this initial condition. Although severely distorted at times
(not shown), the dominant horizontal pattern remained hexagonal as in the initial
condition, but unlike the initial condition for which 〈T 2

x 〉 = 〈T 2
y 〉 the time-averaged

r.m.s. horizontal gradients were 〈T 2
x 〉 = 33 and 〈T 2

y 〉 =55. The r.m.s. vertical gradient

was 〈T 2
z 〉 =5.9 which is about 20% larger than in the previous run. Despite the

different grid/solution geometry, the time-averaged heat flux 〈wT 〉 = − 96 ± 10 was
comparable to the one obtained in the previous run. We therefore conclude that,
although a particular grid might bias the solution to a particular planform (squares,
hexagons), the statistically averaged fluxes are independent of the grid geometry.

The reason why the three-dimensional fluxes are larger than in two-dimensions can
be explained by the truncated theory (§ 3), although this pertains to a two-dimensional
triad. If now an identical triad is superimposed with its axis orthogonally aligned,
then the two groups are not modally coupled, and will therefore evolve independently
to give a three-dimensional disturbance with a heat flux twice that of the individual
triads.

6. Conclusions
Analytical and numerical calculations have been made for a density ratio (R)

which is slightly less than the value (l/τ ) necessary to initiate long finger convection
in sugar–salt solutions; the main purpose was to elucidate the mechanism by which
the linearly amplifying ‘elevator’ mode is equilibrated. Using the Radko & Stern
(1999) asymptotic theory (2.17) we first performed a two-dimensional triad mode
truncation calculation. This showed that equilibration of the primary mode (the long
fingers) can be accomplished by two (linearly damped) slaves, provided their vertical
wavenumber exceeds 0.51 times the horizontal wavenumber of the fastest growing
mode of the linear stability theory. This mc sets the vertical ‘scale’ of the ‘round
eddies’ which are found to equilibrate the amplitude in a two-dimensional spectral
solution (§ 4). The mode truncation theory (§ 3) gives a good explanation of the full
spectral solution, and in particular gives the mechanism of equilibration.

Three-dimensional calculations were also made and the respective values of the non-
dimensional heat flux, r.m.s. vertical gradient, and r.m.s. horizontal gradients were

〈wT 〉 = −100 ± 10,〈
T 2

z

〉 ∼= 5.0,〈
T 2

x

〉 ∼=
〈
T 2

y

〉 ∼= 43.
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Using the (ε → 0) scaling in (2.18) the dimensional eddy diffusivityD is

D = KT

(
1

Rτ
− 1

)2

〈wT 〉.

If we make a (long) extrapolation of this result to large ε we obtain a qualitative
explanation of the increase of heat flux with decreasing R as measured in heat–salt
experiments (cf. Stern et al. 2001). Also from (2.18) we obtain a heat–salt flux ratio

γ =
〈w(T − S)〉

〈wS〉
+ 1 = −ε + 1

which decreases from unity as R or τ decrease.
The above results are testable in sugar–salt (τ = 1/3) experiments, such as performed

by Krishnamurti (2003). In her figures 4 and 6 the ‘lumpy’ quasi-linear fingers
seem to be qualitatively consistent with our triad theory and numerical calculations
(figure 8c) since the dominant substructure consists of relatively small x- and z-
wavelengths. It is especially noteworthy that the three-dimensional fluxes are thirty
times the two-dimensional fluxes; in heat–salt experiments (τ =1/100) relevant to the
ocean the corresponding ratio is 2 (Stern et al. 2001).

In conclusion, it should be noted that the self-equilibration mechanism considered
here does not involve large-scale motions, e.g. external shear (Kunze 1994) or collective
instability (Stern 1969). Although these other mechanisms can inhibit the fingers, they
are not the primary mechanism since equilibration is possible even when they are
absent. The equilibration mechanism considered here also differs from the nonlinear
instability of Holyer (1984) where the triad interaction involves the marginally (zero
growth) stable elevator mode, a round eddy mode, and an amplified (horizontally
averaged) flow. This instability is excluded in the present large-Prandtl-number theory
for which the horizontally averaged velocities vanish. The large Prandtl number also
excludes the shear flow instability of Howard & Veronis (1992).
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